1 слайд

Работа учениц 11 Б класса Школы № 288 г.Заозерска Ерина Мария и Старицына Светлана

2 слайд

Электроэнергия - физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Электрическая энергия является также товаром, который приобретают участники оптового рынка у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний.

3 слайд

Есть несколько способов создания электроэнергии: Различные электростанции (ГЭС,АЭС,ТЭС,ПЭС …) А также альтернативные источники(энергия солнца,энергия ветра,энергия Земли)

4 слайд

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС -- основной вид электрической станций. На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

5 слайд

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

6 слайд

Атомная электростанция электростанция, в которой атомная энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях,преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем.

7 слайд

Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности.

8 слайд

При этом встает проблема эффективного использования этой энергии. При передаче электроэнергии на большие расстояния, от производителя до потребителя, потери на тепло вдоль линии передачи растут пропорционально квадрату тока, т.е. если ток удваивается, то тепловые потери увеличиваются в 4 раза. Поэтому, желательно, чтобы ток в линиях был мал. Для этого повышают напряжение на линии передач. Электроэнергия передается по линиям, где напряжение достигает сотен тысяч вольт. Возле городов, получающих энергию от линий передач, это напряжение с помощью понижающего трансформатора доводят до нескольких тысяч вольт. В самом же городе на подстанциях напряжение понижается до 220 вольт.

9 слайд

Наша страна занимает большую территорию, почти 12 часовых поясов. А это значит, что если в одних регионах потребление электроэнергии максимально, то в других уже окончен рабочий день и потребление снижается. Для рационального использования электроэнергии вырабатываемой электростанциями, они объединены в электроэнергетические системы отдельных районов: европейской части, Сибири, Урала, Дальнего Востока и др. Такое объединение позволяет эффективней использовать электроэнергию согласовывая работу отдельных электростанций. Сейчас различные энергосистемы объединены в единую энергетическую систему России.

ЭФФЕКТИВНОЕ ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на большие расстояния со сравнительно небольшими потерями и несложно распределять между потребителями. Благодаря этому электрическая энергия является наиболее распространенным и удобным видом энергии. Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на большие расстояния со сравнительно небольшими потерями и несложно распределять между потребителями. Благодаря этому электрическая энергия является наиболее распространенным и удобным видом энергии. Она представляется уникальной с точки зрения универсальной применяемости, регулируемости и способности эффективно выполнять множество задач. Но главное достоинство состоит в том, что электрическую энергию с помощью достаточно простых устройств с высокой эффективностью можно превращать в другие виды: механическую, внутреннюю (нагревание тел), энергию света и т. д. Она представляется уникальной с точки зрения универсальной применяемости, регулируемости и способности эффективно выполнять множество задач. Но главное достоинство состоит в том, что электрическую энергию с помощью достаточно простых устройств с высокой эффективностью можно превращать в другие виды: механическую, внутреннюю (нагревание тел), энергию света и т. д. Освещение, нагрев и охлаждение, термическая и механическая обработка, медицинские приборы и оборудование, компьютеры, средства коммуникации - лишь некоторые услуги, которые электричество предоставляет все увеличивающемуся населению земного шара, коренным образом изменив весь его жизненный уклад. Освещение, нагрев и охлаждение, термическая и механическая обработка, медицинские приборы и оборудование, компьютеры, средства коммуникации - лишь некоторые услуги, которые электричество предоставляет все увеличивающемуся населению земного шара, коренным образом изменив весь его жизненный уклад. При особом значении электроэнергии для функционирования всех секторов экономики дефицит ее имел бы тяжелые последствия. Однако финансирование строительства мощных электростанций - весьма дорогое мероприятие: электростанция мощностью 1000 МВт обойдется в среднем в 1 млрд долларов США. По этой причине производители и потребители электроэнергии оказываются перед выбором: либо вырабатывать требуемое количество электроэнергии, либо сокращать потребность в ней, либо решать обе задачи одновременно. При особом значении электроэнергии для функционирования всех секторов экономики дефицит ее имел бы тяжелые последствия. Однако финансирование строительства мощных электростанций - весьма дорогое мероприятие: электростанция мощностью 1000 МВт обойдется в среднем в 1 млрд долларов США. По этой причине производители и потребители электроэнергии оказываются перед выбором: либо вырабатывать требуемое количество электроэнергии, либо сокращать потребность в ней, либо решать обе задачи одновременно. Потенциал повышения эффективности является экономически целесообразным исходя из срока окупаемости инвестиций, который не должен превышать 5 лет. Использование электроэнергии в промышленности приходится в основном на три категории потребителей: привод, технологические процессы (в большинстве тепловые) и освещение. Потенциал повышения эффективности является экономически целесообразным исходя из срока окупаемости инвестиций, который не должен превышать 5 лет. Использование электроэнергии в промышленности приходится в основном на три категории потребителей: привод, технологические процессы (в большинстве тепловые) и освещение. Потребление электроэнергии приводом (электродвигатели) варьирует в достаточно широком диапазоне в зависимости от типа двигателей (постоянного тока, синхронные или индукционные), их мощности (размеров) и применения. Потребление электроэнергии приводом (электродвигатели) варьирует в достаточно широком диапазоне в зависимости от типа двигателей (постоянного тока, синхронные или индукционные), их мощности (размеров) и применения. Второй по величине потребитель, технологические процессы, обычно менее однороден, чем другие категории. Выделяют три основные подгруппы: электроэнергия, непосредственно генерирующая тепло; электрохимические процессы; электродуговые печи, используемые в основном в производстве чугуна и стали. Электротермические процессы в странах, потребляют менее 30% промышленного потребления электроэнергии (за исключением Швеции, где на их долю приходится до 37%). Второй по величине потребитель, технологические процессы, обычно менее однороден, чем другие категории. Выделяют три основные подгруппы: электроэнергия, непосредственно генерирующая тепло; электрохимические процессы; электродуговые печи, используемые в основном в производстве чугуна и стали. Электротермические процессы в странах, потребляют менее 30% промышленного потребления электроэнергии (за исключением Швеции, где на их долю приходится до 37%). Использование электроэнергии для осуществления электрохимических процессов доминирует в производстве цветных металлов (прежде всего, выплавка алюминия). В силу высокой энергоинтенсивности алюминиевая промышленность занимает особое место в потреблении электроэнергии по сравнению с другими отраслями. Вместе с тем электрохимические технологии идентичны в большинстве отраслей промышленности и хорошо изучены. Пути дальнейшего повышения их эффективности понятны, но реализация сильно зависит от стоимости электроэнергии, которая в алюминиевой промышленности, например, составляет основную часть эксплуатационных расходов. Использование электроэнергии для осуществления электрохимических процессов доминирует в производстве цветных металлов (прежде всего, выплавка алюминия). В силу высокой энергоинтенсивности алюминиевая промышленность занимает особое место в потреблении электроэнергии по сравнению с другими отраслями. Вместе с тем электрохимические технологии идентичны в большинстве отраслей промышленности и хорошо изучены. Пути дальнейшего повышения их эффективности понятны, но реализация сильно зависит от стоимости электроэнергии, которая в алюминиевой промышленности, например, составляет основную часть эксплуатационных расходов. Доля освещения в общем потреблении электроэнергии промышленностью составляет 4-11%. Эффективность промышленного освещения в целом существенно выше и доля его в общем потреблении электроэнергии меньше, чем в жилищно-бытовом и социальном секторах. Доля освещения в общем потреблении электроэнергии промышленностью составляет 4-11%. Эффективность промышленного освещения в целом существенно выше и доля его в общем потреблении электроэнергии меньше, чем в жилищно-бытовом и социальном секторах. Экономьте электроэнергию!


Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света. Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света.


Преимущество электрической энергии Можно передавать по проводам Можно передавать по проводам Можно трансформировать Можно трансформировать Легко превращается в другие виды энергии Легко превращается в другие виды энергии Легко получается из других видов энергии Легко получается из других видов энергии


Генератор - Устройство, преобразующее энергию того или иного вида в электрическую энергию. Устройство, преобразующее энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи




Эксплуатация генератора Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным). Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным).




Значение генератора в производстве электрической энергии Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично




Как устроен трансформатор? Он состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две катушки с проволочными обмотками. Первичная обмотка подключается к источнику переменного напряжения. К вторичной обмотке присоединяют нагрузку.











АЭС производят 17% мировой выработки. Начало ХХI века эксплуатируется 250 АЭС, работают 440 энергоблоков. Больше всего США, Франции, Японии, ФРГ, России, Канаде. Урановый концентрат (U3O8) сосредоточен в следующих странах: Канаде, Австралии, Намибии, США, России. Атомные электростанции


Сравнение типов электростанции Типы электростанц ий Выбросвредных веществ в атмосфе ры, кг Занимае мая площадьга Потребле ние чистой воды м 3 Сбро с грязн ой воды, м 3 Затрат ы наохрану приро ды % ТЭЦ: уголь 251,5600,530 ТЭЦ: мазут 150,8350,210 ГЭС АЭС--900,550 ВЭС10--1 СЭС-2--- БЭС10-200,210







Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Использование электроэнергии в областях науки Наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на растояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной« революции в экономике развитых стран. Очень бурно развивается наука в области средств связи и коммуникаций.

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Презентация по слайдам

Текст слайда: Производство, передача и использование электрической энергии. Разработал: Н.В.Грузинцева. г. Красноярск


Текст слайда: Цель проекта: Понимание производства, передачи и использования электрической энергии. Задачи проекта, рассмотреть: Генерирование электрической энергии. Трансформаторы. Производство и использование электрической энергии. Передача электроэнергии. Эффективное использование электроэнергии.


Текст слайда: Вступление: Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся: Гальванические элементы. Электростатические батареи. Термобатареи. Солнечные батареи. и т. п.


Текст слайда: Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, то говорят, что они обладают энергией. Энергия – физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергию выражают в системе СИ в тех же единицах, что и работу, т.е. в джоулях.


Текст слайда: Преобладают электромеханические индукционные генераторы переменного тока. Механическая энергия Электрическая энергия Для получения большого магнитного потока в генераторах применяют специальную магнитную систему состоящую из: Статор; Генератор; Кольца; Турбина; Корпус; Ротор; Щётки; Возбудитель.


Текст слайда: Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов. Устройство трансформатора: Замкнутый стальной сердечник, собранный из пластин; Две (иногда более) катушки с проволочными обмотками. первичная, вторичная, применяемая к источнику к ней присоединяют переменного напряжения. нагрузку, т.е. приборы и устройства, потребляющие электроэнергию.


Текст слайда: Источник энергии на ТЭС: уголь, газ, нефть, мазут, горючие сланцы, угольная пыль. Дают 40% электроэнергии. Внутренняя Энергия проводов ТЭС ПОТРЕБИТЕЛЬ


Текст слайда: На ГЭС для вращения роторов генераторов используется потенциальная энергия воды. Дают 20% электроэнергии. ГЭС ПОТРЕБИТЕЛЬ Внутренняя энергия проводов


Текст слайда: промышленность транспорт производственные и бытовые нужды механическая энергия ЭЛЕКТРОЭНЕРГИЯ

Слайд №10


Текст слайда: Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образующие общую электрическую цепь, к которой присоединены потребители. Такое объединение называется энергосистемой. Передача электроэнергии. заметные потери Потребитель трансформатор напряжение понижается; трансформатор напряжение увеличивается; сила тока уменьшается.


Close